, , , e.a.

Subspace, Latent Structure and Feature Selection

Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers

Paperback Engels 2006 2006e druk 9783540341376
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book constitutes the thoroughly refereed post-proceedings of the PASCAL (pattern analysis, statistical modelling and computational learning) Statistical and Optimization Perspectives Workshop on Subspace, Latent Structure and Feature Selection techniques, SLSFS 2005. The 9 revised full papers presented together with 5 invited papers reflect the key approaches that have been developed for subspace identification and feature selection using dimension reduction techniques, subspace methods, random projection methods, among others.

Specificaties

ISBN13:9783540341376
Taal:Engels
Bindwijze:paperback
Aantal pagina's:209
Uitgever:Springer Berlin Heidelberg
Druk:2006

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Invited Contributions.- Discrete Component Analysis.- Overview and Recent Advances in Partial Least Squares.- Random Projection, Margins, Kernels, and Feature-Selection.- Some Aspects of Latent Structure Analysis.- Feature Selection for Dimensionality Reduction.- Contributed Papers.- Auxiliary Variational Information Maximization for Dimensionality Reduction.- Constructing Visual Models with a Latent Space Approach.- Is Feature Selection Still Necessary?.- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data.- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery.- A Simple Feature Extraction for High Dimensional Image Representations.- Identifying Feature Relevance Using a Random Forest.- Generalization Bounds for Subspace Selection and Hyperbolic PCA.- Less Biased Measurement of Feature Selection Benefits.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Subspace, Latent Structure and Feature Selection