, , , e.a.

Probabilistic Logic Networks

A Comprehensive Framework for Uncertain Inference

Gebonden Engels 2008 1e druk 9780387768717
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Abstract In this chapter we provide an overview of probabilistic logic networks (PLN), including our motivations for developing PLN and the guiding principles underlying PLN. We discuss foundational choices we made, introduce PLN knowledge representation, and briefly introduce inference rules and truth-values. We also place PLN in context with other approaches to uncertain inference. 1.1 Motivations This book presents Probabilistic Logic Networks (PLN), a systematic and pragmatic framework for computationally carrying out uncertain reasoning – r- soning about uncertain data, and/or reasoning involving uncertain conclusions. We begin with a few comments about why we believe this is such an interesting and important domain of investigation. First of all, we hold to a philosophical perspective in which “reasoning” – properly understood – plays a central role in cognitive activity. We realize that other perspectives exist; in particular, logical reasoning is sometimes construed as a special kind of cognition that humans carry out only occasionally, as a deviation from their usual (intuitive, emotional, pragmatic, sensorimotor, etc.) modes of thought. However, we consider this alternative view to be valid only according to a very limited definition of “logic.” Construed properly, we suggest, logical reasoning may be understood as the basic framework underlying all forms of cognition, including those conventionally thought of as illogical and irrational.

Specificaties

ISBN13:9780387768717
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:336
Uitgever:Springer US
Druk:1

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Knowledge Representation.- Experiential Semantics.- Indefinite Truth Values.- First-Order Extensional Inference: Rules and Strength Formulas.- First-Order Extensional Inference with Indefinite Truth Values.- First-Order Extensional Inference with Distributional Truth Values.- Error Magnification in Inference Formulas.- Large-Scale Inference Strategies.- Higher-Order Extensional Inference.- Handling Crisp and Fuzzy Quantifiers with Indefinite Truth Values.- Intensional Inference.- Aspects of Inference Control.- Temporal and Causal Inference.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Probabilistic Logic Networks